Huidige Locatie: Home -  Longchamp Bags Brussels gt 0 berekent een benadering van

Longchamp Bags Brussels gt 0 berekent een benadering van

Longchamp Bags Brussels

Gezien de punten p en q in het vliegtuig, wij zijn geïnteresseerd in ze te scheiden door twee bochten C1C1 en C2C2 zodanig dat elk punt van C1C1 heeft gelijke afstand tot p en C2C2, en elk punt van Longchamp Bags Brussels C2C2 heeft gelijke afstand te C1C1 en q. We tonen door elementaire geometrische middel dat dergelijke C1C1 en C2C2 bestaan ​​en zijn uniek. Bovendien, voor p = (0,1) p = (0,1) en q = (0, -1) q = (0, -1), C1C1 is de grafiek van de functie u0026 lt; img height = '15' border = '0' style = 'vertical-align: bottom' width = '69' alt = 'Bekijk de MathML bron' title = 'Bekijk de MathML bron' src = 'http: //origin-ars.els-cdn. com / content / image / 1-S2.0-S0001870806003434-si12.gif 'u0026 gt; f: R → R, C2C2 is de grafiek van f u0026 nbsp ;, en f u0026 nbsp; convex en analytische (dat wil zeggen, gegeven door een convergente machtreeks in een buurt van elk punt). We veronderstellen dat f u0026 nbsp; geen expressie van elementaire functies en vooral niet algebraïsch. Wij bieden een algoritme dat, x∈Rx∈R en ε u0026 gt gegeven; 0ε u0026 gt; 0, berekent een benadering van f (x) f (x) met fout bij de meeste ε u0026 nbsp; in de tijd polynoom in u0026 lt; img height = '22' border = '0' style = 'vertical-align: bottom' width = '57' alt = 'Bekijk de MathML bron' title = 'Bekijk de MathML bron' src Longchamp Tassen Online = ' http://origin-ars.els-cdn.com/content/image/1-s2.0-S0001870806003434-si17.gif'u0026gt;log1+|x|ε. De scheiding van de twee punten met twee 'Trisector' curves hier beschouwde een speciaal (tweepunts) bij een nieuw soort Voronoi-diagram, waarin we de zone diagram en die wordt onderzocht in een begeleidende papieren noemen.
0 Reacties


Spreek uw mening
Recente Reacties